Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.440
Filtrar
1.
Bioorg Med Chem ; 104: 117693, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552598

RESUMO

Synthetic siRNA molecules without chemical modifications are easily degraded in the body, and 2'-O-modifications are frequently introduced to enhance stability. However, such chemical modifications tend to impact the gene knockdown potency of siRNA negatively. To circumvent this problem, we previously developed a prodrug-type siRNA bearing 2'-O-methyldithiomethyl (MDTM) groups, which can be converted into unmodified siRNA under the reductive environment in cells. In this study, we developed a nuclease-resistant prodrug-type 2'-O-MDTM siRNA for deployment in future animal experiments. To rationally design siRNA modified with a minimal number of 2'-O-MDTM nucleotide residues, we identified the sites susceptible to nuclease digestion and tolerant to 2'-O-methyl (2'-OMe) modification in the antisense strand of apolipoprotein B-targeted siRNA. Subsequently, we optimized the positions where the 2'-OMe and 2'-O-MDTM groups should be incorporated. siRNA bearing the 2'-O-MDTM and 2'-OMe groups at their respective optimized positions exhibited efficient knockdown potency in vitro and enhanced stability in serum.


Assuntos
Pró-Fármacos , RNA Interferente Pequeno/química , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Inativação Gênica , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 44(5): 1053-1064, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38482694

RESUMO

Zebrafish have become a powerful model of mammalian lipoprotein metabolism and lipid cell biology. Most key proteins involved in lipid metabolism, including cholesteryl ester transfer protein, are conserved in zebrafish. Consequently, zebrafish exhibit a human-like lipoprotein profile. Zebrafish with mutations in genes linked to human metabolic diseases often mimic the human phenotype. Zebrafish larvae develop rapidly and externally around the maternally deposited yolk. Recent work revealed that any disturbance of lipoprotein formation leads to the accumulation of cytoplasmic lipid droplets and an opaque yolk, providing a visible phenotype to investigate disturbances of the lipoprotein pathway, already leading to discoveries in MTTP (microsomal triglyceride transfer protein) and ApoB (apolipoprotein B). By 5 days of development, the digestive system is functional, making it possible to study fluorescently labeled lipid uptake in the transparent larvae. These and other approaches enabled the first in vivo description of the STAB (stabilin) receptors, showing lipoprotein uptake in endothelial cells. Various zebrafish models have been developed to mimic human diseases by mutating genes known to influence lipoproteins (eg, ldlra, apoC2). This review aims to discuss the most recent research in the zebrafish ApoB-containing lipoprotein and lipid metabolism field. We also summarize new insights into lipid processing within the yolk cell and how changes in lipid flux alter yolk opacity. This curious new finding, coupled with the development of several techniques, can be deployed to identify new players in lipoprotein research directly relevant to human disease.


Assuntos
Apolipoproteínas B , Modelos Animais de Doenças , Metabolismo dos Lipídeos , Peixe-Zebra , Peixe-Zebra/genética , Animais , Metabolismo dos Lipídeos/genética , Apolipoproteínas B/metabolismo , Apolipoproteínas B/genética , Humanos , Fenótipo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Mutação
3.
Can J Physiol Pharmacol ; 102(5): 305-317, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334084

RESUMO

Mostly, cardiovascular diseases are blamed for casualties in rheumatoid arthritis (RA) patients. Customarily, dyslipidemia is probably the most prevalent underlying cause of untimely demise in people suffering from RA as it hastens the expansion of atherosclerosis. The engagement of inflammatory cytokines like tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), etc., is crucial in the progression and proliferation of both RA and abnormal lipid parameters. Thus, lipid abnormalities should be monitored frequently in patients with both primary and advanced RA stages. An advanced lipid profile examination, i.e., direct role of apolipoproteins associated with various lipid molecules is a more dependable approach for better understanding of the disease and selecting suitable therapeutic targets. Therefore, studying their apolipoproteins is more relevant than assessing RA patients' altered lipid profile levels. Among the various apolipoprotein classes, Apo A1 and Apo B are primarily being focused. In addition, it also addresses how calculating Apo B:Apo A1 ratio can aid in analyzing the disease's risk. The marketed therapies available to control lipid abnormalities are associated with many other risk factors. Hence, directly targeting Apo A1 and Apo B would provide a better and safer option.


Assuntos
Apolipoproteínas , Artrite Reumatoide , Doenças Cardiovasculares , Fatores de Risco de Doenças Cardíacas , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/sangue , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/etiologia , Apolipoproteínas/sangue , Animais , Apolipoproteína A-I , Apolipoproteínas B/sangue , Apolipoproteínas B/metabolismo , Dislipidemias/tratamento farmacológico , Dislipidemias/sangue , Dislipidemias/metabolismo
4.
J Biol Chem ; 300(3): 105726, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325741

RESUMO

Hyperlipidemia predisposes individuals to cardiometabolic diseases, the most common cause of global mortality. Microsomal triglyceride transfer protein (MTP) transfers multiple lipids and is essential for the assembly of apolipoprotein B-containing lipoproteins. MTP inhibition lowers plasma lipids but causes lipid retention in the liver and intestine. Previous studies suggested two lipid transfer domains in MTP and that specific inhibition of triglyceride (TG) and not phospholipid (PL) transfer can lower plasma lipids without significant tissue lipid accumulation. However, how MTP transfers different lipids and the domains involved in these activities are unknown. Here, we tested a hypothesis that two different ß-sandwich domains in MTP transfer TG and PL. Mutagenesis of charged amino acids in ß2-sandwich had no effect on PL transfer activity indicating that they are not critical. In contrast, amino acids with bulky hydrophobic side chains in ß1-sandwich were critical for both TG and PL transfer activities. Substitutions of these residues with smaller hydrophobic side chains or positive charges reduced, whereas negatively charged side chains severely attenuated MTP lipid transfer activities. These studies point to a common lipid transfer domain for TG and PL in MTP that is enriched with bulky hydrophobic amino acids. Furthermore, we observed a strong correlation in different MTP mutants with respect to loss of both the lipid transfer activities, again implicating a common binding site for TG and PL in MTP. We propose that targeting of areas other than the identified common lipid transfer domain might reduce plasma lipids without causing cellular lipid retention.


Assuntos
Proteínas de Transporte , Interações Hidrofóbicas e Hidrofílicas , Fosfolipídeos , Triglicerídeos , Humanos , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Apolipoproteínas B/química , Apolipoproteínas B/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Fosfolipídeos/sangue , Fosfolipídeos/metabolismo , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Domínios Proteicos , Mutação , Relação Estrutura-Atividade , Sítios de Ligação
5.
PLoS One ; 19(1): e0291632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38295021

RESUMO

BACKGROUND: The binding of low-density lipoprotein (LDL) to proteoglycans (PGs) in the extracellular matrix (ECM) of the arterial intima is a key initial step in the development of atherosclerosis. Although many techniques have been developed to assess this binding, most of the methods are labor-intensive and technically challenging to standardize across research laboratories. Thus, sensitive, and reproducible assay to detect LDL binding to PGs is needed to screen clinical populations for atherosclerosis risk. OBJECTIVES: The aim of this study was to develop a quantitative, and reproducible assay to evaluate the affinity of LDL towards PGs and to replicate previously published results on LDL-PG binding. METHODS: Immunofluorescence microscopy was performed to visualize the binding of LDL to PGs using mouse vascular smooth muscle (MOVAS) cells. An in-cell ELISA (ICE) was also developed and optimized to quantitatively measure LDL-PG binding using fixed MOVAS cells cultured in a 96-well format. RESULTS: We used the ICE assay to show that, despite equal APOB concentrations, LDL isolated from adults with cardiovascular disease bound to PG to a greater extent than LDL isolated from adults without cardiovascular disease (p<0.05). CONCLUSION: We have developed an LDL-PG binding assay that is capable of detecting differences in PG binding affinities despite equal APOB concentrations. Future work will focus on candidate apolipoproteins that enhance or diminish this interaction.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Animais , Camundongos , Lipoproteínas LDL/metabolismo , Proteoglicanas/metabolismo , Apolipoproteínas B/metabolismo , Ligação Proteica
6.
Mol Metab ; 80: 101874, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211723

RESUMO

OBJECTIVES: The assembly and secretion of hepatic very low-density lipoprotein (VLDL) plays pivotal roles in hepatic and plasma lipid homeostasis. Protein disulfide isomerase A1 (PDIA1/P4HB) is a molecular chaperone whose functions are essential for protein folding in the endoplasmic reticulum. Here we investigated the physiological requirement in vivo for PDIA1 in maintaining VLDL assembly and secretion. METHODS: Pdia1/P4hb was conditionally deleted in adult mouse hepatocytes and the phenotypes characterized. Mechanistic analyses in primary hepatocytes determined how PDIA1 ablation alters MTTP synthesis and degradation as well as altering synthesis and secretion of Apolipoprotein B (APOB), along with complementary expression of intact PDIA1 vs a catalytically inactivated PDIA1 mutant. RESULTS: Hepatocyte-specific deletion of Pdia1/P4hb inhibited hepatic MTTP expression and dramatically reduced VLDL production, leading to severe hepatic steatosis and hypolipidemia. Pdia1-deletion did not affect mRNA expression or protein stability of MTTP but rather prevented Mttp mRNA translation. We demonstrate an essential role for PDIA1 in MTTP synthesis and function and show that PDIA1 interacts with APOB in an MTTP-independent manner via its molecular chaperone function to support APOB folding and secretion. CONCLUSIONS: PDIA1 plays indispensable roles in APOB folding, MTTP synthesis and activity to support VLDL assembly. Thus, like APOB and MTTP, PDIA1 is an obligatory component of hepatic VLDL production.


Assuntos
Hepatócitos , Lipoproteínas VLDL , Nucleotídeos de Timina , Animais , Camundongos , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Hepatócitos/metabolismo , Lipoproteínas VLDL/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Triglicerídeos/metabolismo
7.
J Lipid Res ; 65(3): 100509, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38295984

RESUMO

Alcohol binge drinking allows the translocation of bacterial lipopolysaccharide (LPS) from the gut to the blood, which activates the peripheral immune system with consequences in neuroinflammation. A possible access/direct signaling of LPS to/in the brain has not yet been described under alcohol abuse conditions. Apolipoproteins are compounds altered by alcohol with high affinity to LPS which may be involved in its transport to the brain or in its elimination. Here, we explored the expression of small components of LPS, in its free form or bound to apolipoproteins, in the brain of female and male rats exposed to alcohol binges. Animals received ethanol oral gavages (3 g/kg every 8 h) for 4 days. LPS or its components (Lipid A and core), LPS-binding protein, corticosterone, lipoproteins (HDL, LDL), apolipoproteins (ApoAI, ApoB, and ApoE), and their receptors were measured in plasma and/or in nonperfused prefrontal cortex (PFC) and cerebellum. Brain LipidA-apolipoprotein aggregates were determined by Western blotting and confirmed by co-immunoprecipitation. In animals exposed to alcohol binges: 1) plasma LPS-binding protein was elevated in both sexes; 2) females showed elevations in plasma ApoAI and corticosterone levels; 3) Lipid A formed aggregates with ApoAI in the female PFC and with ApoB in males, the latter showing Toll-like receptor 4 upregulation in PFC but not females. These results suggest that small bacterial components are present within the brain, forming aggregates with different apolipoproteins, depending on the sex, after alcohol binge intoxications. Results may have implications for the crosstalk between alcohol, LPS, and neuroinflammation.


Assuntos
Etanol , Lipopolissacarídeos , Ratos , Masculino , Feminino , Animais , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Doenças Neuroinflamatórias , Lipídeo A/metabolismo , Corticosterona/metabolismo , Apolipoproteínas/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Apolipoproteínas B/metabolismo
8.
Poult Sci ; 103(1): 103193, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37931402

RESUMO

Animal growth is closely related to glycolipid metabolism, and the liver is the main organ for glycogen storage and fat synthesis in birds, but whether monochromatic light affects glycogen and lipid synthesis in the liver is unclear. Therefore, in this study, a total of 96 Arbor Acre (AA) broilers at posthatching d 0 (P0) were raised under 4 kinds of light-emitting diode (LED) lights, white light (WL), red light (RL), green light (GL), and blue light (BL), to posthatching d 21 (P21) and 35 (P35). The results showed that the liver, abdominal fat, and abdominal fat indices gradually increased with increasing age under monochromatic light treatments. The liver glycogen and triglyceride (TG) contents also showed an increasing trend. Furthermore, compared with those at P21, the mRNA levels of glycogen synthase (GS), glycogen synthase kinase-3ß (GSK-3ß), and protein kinase B (AKT1) in the liver were increased in the WL and RL groups at P35, and the mRNA levels of acetyl-CoA carboxylase (ACC) and apolipoprotein B (APOB) increased in all groups at P35. At the same time, the total antioxidant capacity (T-AOC) and liver superoxide dismutase (SOD) contents increased in all groups at P35 compared with those at P21. In addition, at P21, compared with WL, GL and BL promoted the serum glucose (GLU) and TG contents by increasing the mRNA levels of GS, GSK-3ß, glucose-6-phosphatase (G6PC), ACC, and fatty acid synthase (FAS), but no effect on the proliferative ability and damage of hepatocytes. At P35, RL promoted the hepatic glycogen and TG contents by increasing GSK-3ß, AKT1, ACC, and APOB mRNA levels, and the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were increased than in the WL group. These results suggest that the effects of light color on liver glycogen and lipid synthesis in broilers changed with age, and also provide a theoretical guidance for scientific use of color of light information to improve productive performance in broilers.


Assuntos
Galinhas , Glicogênio Hepático , Animais , Glicogênio Hepático/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Metabolismo dos Lipídeos , RNA Mensageiro/metabolismo , Apolipoproteínas B/metabolismo , Lipídeos , Fígado/metabolismo
9.
J Nat Med ; 78(1): 180-190, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37973705

RESUMO

An acylated flavonol glycoside, trans-tiliroside (1), is found in certain parts of different herbs, including the seeds of Rosa canina (Rosaceae). Previous studies on compound 1 have focused on triglyceride (TG) metabolism, including its anti-obesity and intracellular TG reduction effects. In the present study, the effects of compound 1 on cholesterol (CHO) metabolism were investigated using human hepatocellular carcinoma-derived HepG2 cells and mice. Compound 1 decreased CHO secretion in HepG2 cells, which was enhanced by mevalonate in a concentration-dependent manner and decreased the secretion of apoprotein B (apoB)-100, a marker of very low-density lipoprotein (VLDL). Compound 1 also inhibited the activity of microsomal triglyceride transfer proteins, which mediate VLDL formation from cholesterol and triglycerides in the liver. In vivo, compound 1 inhibited the accumulation of Triton WR-1339-induced TG in the blood of fasted mice and maintained low levels of apoB-100. These results suggest that compound 1 inhibits the secretion of CHO as VLDL from the liver and has the potential for use for the prevention of dyslipidemia.


Assuntos
Lipoproteínas VLDL , Neoplasias Hepáticas , Camundongos , Humanos , Animais , Lipoproteínas VLDL/metabolismo , Lipoproteínas VLDL/farmacologia , Apolipoproteínas B/metabolismo , Células Hep G2 , Fígado/metabolismo , Triglicerídeos , Colesterol , Lipoproteínas LDL/metabolismo
10.
Metabolism ; 150: 155736, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967646

RESUMO

BACKGROUND: Epidemiological evidence links the proprotein convertase subtilisin/kexin 7 (PCSK7) to triglyceride (TG) metabolism. We associated the known PCSK7 gain-of-function non-coding SNP rs236918 with higher levels of plasma apolipoprotein B (apoB) and the loss-of-function coding variant p.Pro777Leu (SNP rs201598301) with lower apoB and TG. Herein, we aimed to unravel the in vivo role of liver PCSK7. METHODS: We biochemically defined the functional role of PCSK7 in lipid metabolism using hepatic cell lines and Pcsk7-/- mice. Our findings were validated following subcutaneous administration of hepatocyte-targeted N-acetylgalactosamine (GalNAc)-antisense oligonucleotides (ASOs) against Pcsk7. RESULTS: Independent of its proteolytic activity, membrane-bound PCSK7 binds apoB100 in the endoplasmic reticulum and enhances its secretion. Mechanistically, the loss of PCSK7/Pcsk7 leads to apoB100 degradation, triggering an unfolded protein response, autophagy, and ß-oxidation, eventually reducing lipid accumulation in hepatocytes. Non-alcoholic fatty liver disease (NAFLD) was induced by a 12-week high fat/fructose/cholesterol diet in wild type (WT) and Pcsk7-/- mice that were then allowed to recover on a 4-week control diet. Pcsk7-/- mice recovered more effectively than WT mice from all NAFLD-related liver phenotypes. Finally, subcutaneous administration of GalNAc-ASOs targeting hepatic Pcsk7 to WT mice validated the above results. CONCLUSIONS: Our data reveal hepatic PCSK7 as one of the major regulators of apoB, and its absence reduces apoB secretion from hepatocytes favoring its ubiquitination and degradation by the proteasome. This results in a cascade of events, eventually reducing hepatic lipid accumulation, thus supporting the notion of silencing PCSK7 mRNA in hepatocytes for targeting NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Subtilisina/metabolismo , Triglicerídeos/metabolismo , Fígado/metabolismo , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Pró-Proteína Convertases/metabolismo , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo
11.
Diabetologia ; 66(12): 2307-2319, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37775612

RESUMO

AIMS/HYPOTHESIS: This study explored the hypothesis that significant abnormalities in the metabolism of intestinally derived lipoproteins are present in individuals with type 2 diabetes on statin therapy. These abnormalities may contribute to residual CVD risk. METHODS: To investigate the kinetics of ApoB-48- and ApoB-100-containing lipoproteins, we performed a secondary analysis of 11 overweight/obese individuals with type 2 diabetes who were treated with lifestyle counselling and on a stable dose of metformin who were from an earlier clinical study, and compared these with 11 control participants frequency-matched for age, BMI and sex. Participants in both groups were on a similar statin regimen during the study. Stable isotope tracers were used to determine the kinetics of the following in response to a standard fat-rich meal: (1) apolipoprotein (Apo)B-48 in chylomicrons and VLDL; (2) ApoB-100 in VLDL, intermediate-density lipoprotein (IDL) and LDL; and (3) triglyceride (TG) in VLDL. RESULTS: The fasting lipid profile did not differ significantly between the two groups. Compared with control participants, in individuals with type 2 diabetes, chylomicron TG and ApoB-48 levels exhibited an approximately twofold higher response to the fat-rich meal, and a twofold higher increment was observed in ApoB-48 particles in the VLDL1 and VLDL2 density ranges (all p < 0.05). Again comparing control participants with individuals with type 2 diabetes, in the latter, total ApoB-48 production was 25% higher (556 ± 57 vs 446 ± 57 mg/day; p < 0.001), conversion (fractional transfer rate) of chylomicrons to VLDL was around 40% lower (35 ± 25 vs 82 ± 58 pools/day; p=0.034) and direct clearance of chylomicrons was 5.6-fold higher (5.6 ± 2.2 vs 1.0 ± 1.8 pools/day; p < 0.001). During the postprandial period, ApoB-48 particles accounted for a higher proportion of total VLDL in individuals with type 2 diabetes (44%) compared with control participants (25%), and these ApoB-48 VLDL particles exhibited a fivefold longer residence time in the circulation (p < 0.01). No between-group differences were seen in the kinetics of ApoB-100 and TG in VLDL, or in LDL ApoB-100 production, pool size and clearance rate. As compared with control participants, the IDL ApoB-100 pool in individuals with type 2 diabetes was higher due to increased conversion from VLDL2. CONCLUSIONS/INTERPRETATION: Abnormalities in the metabolism of intestinally derived ApoB-48-containing lipoproteins in individuals with type 2 diabetes on statins may help to explain the residual risk of CVD and may be suitable targets for interventions. TRIAL REGISTRATION: ClinicalTrials.gov NCT02948777.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Apolipoproteína B-100/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Apolipoproteína B-48 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/complicações , Lipoproteínas VLDL/metabolismo , Apolipoproteínas B/metabolismo , Apolipoproteínas B/uso terapêutico , Lipoproteínas , Triglicerídeos , Lipoproteínas IDL , Quilomícrons
12.
J Clin Lipidol ; 17(6): 800-807, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37718180

RESUMO

BACKGROUND: Molecular genetic testing of patients with hypobetalipoproteinemia may identify a genetic cause that can form the basis for starting proper therapy. Identifying a genetic cause may also provide novel data on the structure-function relationship of the mutant protein. OBJECTIVE: To identify a genetic cause of hypobetalipoproteinemia in a patient with levels of low density lipoprotein cholesterol at the detection limit of 0.1 mmol/l. METHODS: DNA sequencing of the translated exons with flanking intron sequences of the genes adenosine triphosphate-binding cassette transporter 1, angiopoietin-like protein 3, apolipoprotein B, apolipoprotein A1, lecithin-cholesterol acyltransferase, microsomal triglyceride transfer protein and proprotein convertase subtilisin/kexin type 9. RESULTS: The patient was homozygous for mutation Q384K (c.1150C>A) in the apolipoprotein B gene, and this mutation segregated with hypobetalipoproteinemia in the family. Residue Gln384 is located in the large lipid transfer module of apoB that has been suggested to be important for lipidation of apolipoprotein B through interaction with microsomal triglyceride transfer protein. Based on measurements of serum levels of triglycerides and apolipoprotein B-48 after an oral fat load, we conclude that the patient was able to synthesize apolipoprotein B-48 in the intestine in a seemingly normal fashion. CONCLUSION: Our data indicate that mutation Q384K severely reduces the secretion of apolipoprotein B-100 in the liver without reducing the secretion of apolipoprotein B-48 in the intestine. Possible mechanisms for the different effects of this and other missense mutations affecting the large lipid transfer module on the two forms of apoB are discussed.


Assuntos
Hipobetalipoproteinemias , Mutação de Sentido Incorreto , Humanos , Apolipoproteína B-100/genética , Apolipoproteína B-48 , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Intestinos , Hipobetalipoproteinemias/genética , Mutação , Fígado/metabolismo
13.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445857

RESUMO

The association between serum levels of endothelial lipase (EL) and the serum levels and composition of apolipoprotein B (apoB)-containing lipoproteins in healthy subjects and patients with metabolic syndrome (MS) remained unexplored. Therefore, in the present study, we determined the serum levels and lipid content of apoB-containing lipoproteins using nuclear magnetic resonance (NMR) spectroscopy and examined their association with EL serum levels in healthy volunteers (HVs) and MS patients. EL was significantly negatively correlated with the serum levels of cholesterol in large very low-density lipoprotein (VLDL) particles, as well as with total-cholesterol-, free-cholesterol-, triglyceride-, and phospholipid-contents of VLDL and intermediate-density lipoprotein particles in MS patients but not in HVs. In contrast, EL serum levels were significantly positively correlated with the serum levels of apoB, triglycerides, and phospholipids in large low-density lipoprotein particles in HVs but not in MS patients. EL serum levels as well as the serum levels and lipid content of the majority of apoB-containing lipoprotein subclasses were markedly different in MS patients compared with HVs. We conclude that EL serum levels are associated with the serum levels and lipid content of apoB-containing lipoproteins and that these associations are markedly affected by MS.


Assuntos
Síndrome Metabólica , Humanos , Voluntários Saudáveis , Lipoproteínas/metabolismo , Colesterol , Triglicerídeos , Lipoproteínas VLDL/metabolismo , Lipase , Apolipoproteínas B/metabolismo , Fosfolipídeos , Lipoproteínas LDL/metabolismo
14.
JCI Insight ; 8(16)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37432744

RESUMO

Dyslipidemia in obesity results from excessive production and impaired clearance of triglyceride-rich (TG-rich) lipoproteins, which are particularly pronounced in the postprandial state. Here, we investigated the impact of Roux-en-Y gastric bypass (RYGB) surgery on postprandial VLDL1 and VLDL2 apoB and TG kinetics and their relationship with insulin-responsiveness indices. Morbidly obese patients without diabetes who were scheduled for RYGB surgery (n = 24) underwent a lipoprotein kinetics study during a mixed-meal test and a hyperinsulinemic-euglycemic clamp study before the surgery and 1 year later. A physiologically based computational model was developed to investigate the impact of RYGB surgery and plasma insulin on postprandial VLDL kinetics. After the surgery, VLDL1 apoB and TG production rates were significantly decreased, whereas VLDL2 apoB and TG production rates remained unchanged. The TG catabolic rate was increased in both VLDL1 and VLDL2 fractions, but only the VLDL2 apoB catabolic rate tended to increase. Furthermore, postsurgery VLDL1 apoB and TG production rates, but not those of VLDL2, were positively correlated with insulin resistance. Insulin-mediated stimulation of peripheral lipoprotein lipolysis was also improved after the surgery. In summary, RYGB resulted in reduced hepatic VLDL1 production that correlated with reduced insulin resistance, elevated VLDL2 clearance, and improved insulin sensitivity in lipoprotein lipolysis pathways.


Assuntos
Cirurgia Bariátrica , Resistência à Insulina , Obesidade Mórbida , Humanos , Insulina , Lipoproteínas VLDL/metabolismo , Cinética , Obesidade Mórbida/cirurgia , Lipoproteínas/metabolismo , Apolipoproteínas B/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-37315736

RESUMO

In the maternal circulation, apoB-containing low-density lipoproteins (LDL) and apoA1-containing high-density lipoproteins (HDL) transport lipids. The production of lipoproteins in the placenta has been suggested, but the directionality of release has not been resolved. We compared apolipoprotein concentrations and size-exclusion chromatography elution profiles of lipoproteins in maternal/fetal circulations, and in umbilical arteries/veins; identified placental lipoprotein-producing cells; and studied temporal induction of lipoprotein-synthesizing machinery during pregnancy. We observed that maternal and fetal lipoproteins are different with respect to concentrations and elution profiles. Surprisingly, concentrations and elution profiles of lipoproteins in umbilical arteries and veins were similar indicating their homeostatic control. Human placental cultures synthesized apoB100-containing LDL-sized and apoA1-containing HDL-sized particles. Immunolocalization techniques revealed that ApoA1 was present mainly in syncytiotrophoblasts. MTP, a critical protein for lipoprotein assembly, was in these trophoblasts. ApoB was in the placental stroma indicating that trophoblasts secrete apoB-containing lipoproteins into the stroma. ApoB and MTP expressions increased in placentas from the 2nd trimester to term, whereas apoA1 expression was unchanged. Thus, our studies provide new information regarding the timing of lipoprotein gene induction during gestation, the cells involved in lipoprotein assembly and the gel filtration profiles of human placental lipoproteins. Next, we observed that mouse placenta produces MTP, apoB100, apoB48 and apoA1. The expression of genes gradually increased and peaked in late gestation. This information may be useful in identifying transcription factors regulating the induction of these genes in gestation and the importance of placental lipoprotein assembly in fetal development.


Assuntos
Proteínas de Transporte , Placenta , Camundongos , Animais , Humanos , Feminino , Gravidez , Placenta/metabolismo , Proteínas de Transporte/metabolismo , Lipoproteínas/metabolismo , Apolipoproteínas B/metabolismo , Lipoproteínas LDL/metabolismo
16.
Tuberculosis (Edinb) ; 141: 102359, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37329682

RESUMO

BACKGROUND: Increasing prevalence of drug-resistant tuberculosis (DR-TB) poses a major challenge to the early detection and effective control of tuberculosis (TB). Exosomes carrying proteins and nucleic acid mediate intercellular communication between host and pathogen including Mycobacterium tuberculosis. However, molecular events of exosomes indicating the status and development of DR-TB remain unknown. This study determined the proteomics of exosome in DR-TB and explored the potential pathogenesis of DR-TB. METHODS: Plasma samples were collected from 17 DR-TB patients and 33 non-drug-resistant tuberculosis (NDR-TB) patients using grouped case-control study design. After exosomes of plasma were isolated and confirmed by compositional and morphological measurement for exosomal characteristics, a label-free quantitative proteomics of exosomes was performed and differential protein components were determined via bioinformatics analysis. RESULTS: Compared with the NDR-TB group, we identified 16 up-regulated proteins and 10 down-regulated proteins in the DR-TB group. The down-regulated proteins were mainly apolipoproteins and mainly enriched in cholesterol metabolism-related pathways. Apolipoproteins family including APOA1, APOB, APOC1 were key proteins in protein-protein interaction network. CONCLUSION: Differentially expressed proteins in the exosomes may indicate the status of DR-TB from NDR-TB. Apolipoproteins family including APOA1, APOB, APOC1 may be involved in the pathogenesis of DR-TB by regulating cholesterol metabolism via exosomes.


Assuntos
Exossomos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Antituberculosos/farmacologia , Exossomos/metabolismo , Estudos de Casos e Controles , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose/microbiologia , Colesterol/metabolismo , Apolipoproteínas B/metabolismo , Apolipoproteínas B/farmacologia
17.
Drug Des Devel Ther ; 17: 1819-1829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360572

RESUMO

Background: Traditional Chinese medicine (TCM) with single or compound materials is an effective cure for liver fibrosis. Hepatic stellate cells (HSCs) play a key role in liver fibrosis pathology and have become a novel drug target for this condition. Methods: CCK-8 assay was used to determine the cytotoxicity of four components, SYPA, HSYPA, Apigenin, and Luteolin, from Deduhonghua-7 powder on HSC-T6 cells. Transforming Growth Factor ß 1 (TGFß1)-induced fibrotic cell model and CCI4-induced fibrotic rat model were constructed, the expression of fibrosis-related genes, the pathological changes and serum biochemical markers were evaluated. Proteomic analysis was performed to determine the mechanism by which luteolin attenuated liver fibrosis, which were further confirmed by Western blot. Results: Luteolin attenuates liver fibrosis in HSC-T6 cells and luteolin decreases the liver fibrosis index level in vivo. A total of 5000 differentially expressed proteins (DEPs) were obtained using proteomic analysis. KEGG analysis found that DEPs were concentrated in various metabolic pathways, including DNA replication and repair and lysosomal signaling. GO analysis showed that molecular functions included the activity and binding of various enzymes, related cellular components included the extracellular space, lysosomal lumen, mitochondrial matrix, and nucleus, and biological processes included collagen organization and biosynthesis and the positive regulation of cell migration. Western blot results showed that CCR1, CD59, and NAGA were downregulated in TGFß1 treatment, while upregulated both in Lut2 and Lut10 treatment. Meanwhile, eight proteins, ITIH3, MKI67, KIF23, DNMT1, P4HA3, CCDC80, APOB, FBLN2, that were upregulated in TGFß1 treatment, while downregulated both in Lut2 and Lut10 treatment. Conclusion: Luteolin was shown to have a strong protective effect on liver fibrosis. CCR1, CD59, and NAGA may promote liver fibrosis while ITIH3, MKI67, KIF23, DNMT1, P4HA3, CCDC80, APOB, and FBLN2 may facilitate protection against fibrosis.


Assuntos
Células Estreladas do Fígado , Luteolina , Ratos , Animais , Luteolina/farmacologia , Proteômica , Linhagem Celular , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Apolipoproteínas B/efeitos adversos , Apolipoproteínas B/metabolismo , Fígado
18.
Aliment Pharmacol Ther ; 58(2): 238-249, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37248657

RESUMO

BACKGROUND: Genetic inactivation and pharmacologic inhibition of the microsomal triglyceride transfer protein (MTP; gene name MTTP) inhibits hepatic secretion of VLDL, thereby reducing serum lipids and apoB at the expense of increasing hepatic steatosis. AIM: To examine the effects of missense variants in MTTP on hepatic and circulating lipids. METHODS: We analysed the association of MTTP missense variants with metabolic, hepatic and clinical phenotypes in the Penn Medicine Biobank (PMBB; n = 37,960) and the UKBiobank (UKB; n = 451,444). RESULTS: We analysed 24 missense variants in MTTP in PMBB for association with biopsy-proven hepatic steatosis and found that an isoleucine 128 to threonine variant (I128T: rs3816873-A, frequency 26%) was associated with reduced steatosis (p < 0.001). PMBB subjects with imaging-proven steatosis also revealed significantly fewer carriers of MTTP I128T compared to controls. Analysis in UKB also showed that MTTP I128T was associated with reduced risk of hepatic steatosis. Unexpectedly, MTTP I128T was found to be associated with reduced plasma levels of LDL-cholesterol and apoB (all p < 0.001). Functional studies indicated that MTTP I128T is neither a classic loss nor gain of function allele. CONCLUSIONS: MTTP I128T is associated with reduced hepatic steatosis as well as reduced plasma lipids and apoB. This paradoxical profile is not consistent with a simple gain or loss of function in MTP activity and suggests a more complex effect on MTP function. Further investigation of MTTP I128T will provide insight into the structure-function of MTP and potentially new approaches to modulate MTP activity that could both reduce hepatic and circulating lipids.


Assuntos
Proteínas de Transporte , Fígado Gorduroso , Humanos , Proteínas de Transporte/genética , Fígado Gorduroso/genética , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo
19.
Nat Biotechnol ; 41(11): 1567-1581, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36823355

RESUMO

The lack of registered drugs for nonalcoholic fatty liver disease (NAFLD) is partly due to the paucity of human-relevant models for target discovery and compound screening. Here we use human fetal hepatocyte organoids to model the first stage of NAFLD, steatosis, representing three different triggers: free fatty acid loading, interindividual genetic variability (PNPLA3 I148M) and monogenic lipid disorders (APOB and MTTP mutations). Screening of drug candidates revealed compounds effective at resolving steatosis. Mechanistic evaluation of effective drugs uncovered repression of de novo lipogenesis as the convergent molecular pathway. We present FatTracer, a CRISPR screening platform to identify steatosis modulators and putative targets using APOB-/- and MTTP-/- organoids. From a screen targeting 35 genes implicated in lipid metabolism and/or NAFLD risk, FADS2 (fatty acid desaturase 2) emerged as an important determinant of hepatic steatosis. Enhancement of FADS2 expression increases polyunsaturated fatty acid abundancy which, in turn, reduces de novo lipogenesis. These organoid models facilitate study of steatosis etiology and drug targets.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Avaliação Pré-Clínica de Medicamentos , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Apolipoproteínas B/metabolismo , Fígado/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-36096639

RESUMO

APOB-containing lipoproteins are large, complex lipid carriers that ferry bulk lipids into the circulation via the secretory pathway, originating from the endoplasmic reticulum of specialized cells in the liver or the gut. Elevation of APOB-containing lipoproteins in the plasma represents a major risk factor for cardiovascular diseases. The production of these lipoproteins requires enzyme-catalyzed, cross-membrane transfer of neutral lipids and phospholipids to lipoproteins, in particular onto the structural component APOB. Transport of these lipid-bearing cargos relies on the COPII machinery and employs the transmembrane cargo receptor SURF4 and the small GTPase SAR1B, together constituting a selective transport program. Intriguingly, a number of factors implicated in lipoprotein production are also packaged into COPII vesicles and may be cotransported with APOB. These observations therefore point to a specialized produce-and-export itinerary during the secretion of these lipid-bearing cargos, warranting future investigations into this unique yet pivotal process at the crossroad of cell biology and physiology.


Assuntos
Proteínas de Transporte , Lipoproteínas , Proteínas de Transporte/metabolismo , Lipoproteínas/análise , Lipoproteínas/metabolismo , Retículo Endoplasmático/metabolismo , Apolipoproteínas B/análise , Apolipoproteínas B/metabolismo , Homeostase , Transporte Proteico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/química , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA